Pilot sets plane down with no landing gear

As perfect as it’s possible to be..
http://news.yahoo.com/video/pilot-sets-plane-down-no-162754568.html

The Dark Suits – YouTube

https://www.youtube.com/watch?feature=player_embedded&v=20fXjwLxyM4#!

Newsroom – Video/Audio: Bernie Sanders – U.S. Senator for Vermont

http://www.sanders.senate.gov/newsroom/media/view/?id=6959286f-5056-a032-5261-b8bb09713157

What Red Wing Looked Like April 24th 2013

OOfdah…

low-cost, long-life battery enables solar, wind to be major grid suppliers

New Battery Design Could Help Solar and Wind Energy Power the Grid

April 24, 2013

Menlo Park, Calif. — Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life battery that could enable solar and wind energy to become major suppliers to the electrical grid.

“For solar and wind power to be used in a significant way, we need a battery made of economical materials that are easy to scale and still efficient,” said Yi Cui, a Stanford associate professor of materials science and engineering and a member of the Stanford Institute for Materials and Energy Sciences, a SLAC/Stanford joint institute. “We believe our new battery may be the best yet designed to regulate the natural fluctuations of these alternative energies.”

Cui and colleagues report their research results, some of the earliest supported by the DOE’s new Joint Center for Energy Storage Research battery hub, in the May issue of Energy & Environmental Science.

In this video, Stanford graduate student Wesley Zhang demonstrates the new low-cost, long-lived flow battery he helped create. (Credit: SLAC National Accelerator Laboratory)

Currently the electrical grid cannot tolerate large and sudden power fluctuations caused by wide swings in sunlight and wind. As solar and wind’s combined contributions to an electrical grid approach 20 percent, energy storage systems must be available to smooth out the peaks and valleys of this “intermittent” power – storing excess energy and discharging when input drops.

Among the most promising batteries for intermittent grid storage today are “flow” batteries, because it’s relatively simple to scale their tanks, pumps and pipes to the sizes needed to handle large capacities of energy. The new flow battery developed by Cui’s group has a simplified, less expensive design that presents a potentially viable solution for large-scale production.

Today’s flow batteries pump two different liquids through an interaction chamber where dissolved molecules undergo chemical reactions that store or give up energy. The chamber contains a membrane that only allows ions not involved in reactions to pass between the liquids while keeping the active ions physically separated. This battery design has two major drawbacks: the high cost of liquids containing rare materials such as vanadium – especially in the huge quantities needed for grid storage – and the membrane, which is also very expensive and requires frequent maintenance.

CLICK IMAGE TO COMPARE BATTERY DIAGRAMS. These diagrams compare Stanford/SLAC’s new lithium-polysulfide flow battery design with conventional “redox” flow batteries. The new flow battery uses only one tank and pump and uses a simple coating instead of an expensive membrane to separate the anode and cathode. (Credit: Greg Stewart/SLAC)

The new Stanford/SLAC battery design uses only one stream of molecules and does not need a membrane at all. Its molecules mostly consist of the relatively inexpensive elements lithium and sulfur, which interact with a piece of lithium metal coated with a barrier that permits electrons to pass without degrading the metal. When discharging, the molecules, called lithium polysulfides, absorb lithium ions; when charging, they lose them back into the liquid. The entire molecular stream is dissolved in an organic solvent, which doesn’t have the corrosion issues of water-based flow batteries.

“In initial lab tests, the new battery also retained excellent energy-storage performance through more than 2,000 charges and discharges, equivalent to more than 5.5 years of daily cycles,” Cui said.

To demonstrate their concept, the researchers created a miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED.

A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

In the future, Cui’s group plans to make a laboratory-scale system to optimize its energy storage process and identify potential engineering issues, and to start discussions with potential hosts for a full-scale field-demonstration unit.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Citation: Yuan Yang, Guangyuan Zheng and Yi Cui, Energy Environ. Sci., 2013 (10.1039/C3EE00072A)

Press Office Contact:
Andy Freeberg, SLAC National Accelerator Laboratory: afreeberg@slac.stanford.edu, (650) 926-4359

Scientist Contact:
Yi Cui, SLAC / Stanford University: yicui@stanford.edu, (650) 723-4613

Drought Map of US for 4-23-2013

Tarsand Oil Pipeline to Arctic Ocean Mulled by Alberta, Canada

Pipeline to Arctic Ocean Mulled by Canada

Calgary firm hired to do feasibility study of pumping oilsands bitumen to Tuktoyaktuk 23 Apr 2013

by CBC News [Link]

image001

The government of Canada’s province of Alberta is looking at yet another pipeline option to get its oil to market should the Keystone XL or Northern Gateway pipeline proposals not come to fruition.

Calgary consulting firm Canatec Associates International Ltd. has been hired by the province to study the feasibility of moving crude from the oilsands up to a port in the Northwest Territories. It has been estimated $30 billion dollars a year stays locked in Alberta’s oilsands because there is no way to get it to market.

TransCanada’s Keystone XL pipeline to the Texas Gulf Coast still needs the approval of the U.S. State Department and President Barak Obama. Its proposal to convert an existing pipeline to pump bitumen eastward to refineries in Quebec and New Brunswick is also controversial.

Meantime, Enbridge’s pipeline proposal west to Kitimat is meeting with fierce resistance in B.C. from environmentalists and Aboriginal groups.

So the Alberta government is looking at another option to build a pipeline from the oilsands up the McKenzie River Valley to a proposed deep-water port at Tuktoyaktuk, a community in Canada’s Northwest Territories (N.W.T.) Continue reading